Straightforward Method for Synthesis of Highly Alkyl-Substituted Naphthacene and Pentacene Derivatives by Homologation

Tamotsu Takahashi,* Masanori Kitamura, Baojian Shen, and Kiyohiko Nakajima ${ }^{\dagger}$

Catalysis Research Center and Graduate School of Pharmaceutical Sciences Hokkaido University CREST, Science and Technology Corporation (JST) Sapporo 060-0811, Japan
Department of Chemistry, Aichi University of Education Igaya, Kariya 448-8542, Japan

Received August 22, 2000
π-Conjugated compounds such as polyphenylenes, polyacetylenes, polythiophenes, and polyacenes have attracted much attention as organic conductive materials. ${ }^{1}$ Among them, polyacenes have a very low band gap $(0.1-0.5 \mathrm{eV})^{2}$ compared with polyacetylenes $(1.4 \mathrm{eV})$, and polythiophenes $(1.71 \mathrm{eV}) .^{1,2}$ Therefore, polyacenes have been widely recognized as a promising and useful organic conductive material. ${ }^{2}$ In fact, recently, pentacene has been shown to be useful for organic solar batteries or semiconductors. ${ }^{3}$ However, the established methods for synthesis of polyacenes have several critical problems. First, available acenes are very limited. Until now, heptacene has been the longest known member of acenes. ${ }^{1 \text { a }}$ Second, acenes such as pentacene have very poor solubility in organic solvents. ${ }^{1 a}$ It is well-known that these problems can be solved by introducing alkyl substituents into the π-conjugated aromatic compounds. ${ }^{4}$ However, there is no systematic general method for the synthesis of highly alkylsubstituted acenes. ${ }^{5}$ Diels-Alder-type reaction of furans or dienes has been known for the construction of the rings. ${ }^{6}$ Dodecamethylnaphthacene could be prepared on the basis of the Diels-Alder reaction of furans with benzynes. ${ }^{7}$ However, similar attempts to prepare alkyl-substituted pentacene derivatives have not been successful. ${ }^{7}$ Here we would like to report a general and straightforward method for the synthesis of highly alkyl-substituted pentacenes and naphthacenes by homologation (eq 1).

Recently, we reported the formation of highly alkyl-substituted phthalates $\mathbf{1}$ by the reaction of zirconacyclopentadienes with

[^0]Scheme 1. Preparation of Odd-Numbered Ring Compounds


```
i) }\mp@subsup{\textrm{LiAiH}}{4}{}\mathrm{ ii) }\mp@subsup{\textrm{PBr}}{3}{}\mathrm{ iii) 2eq Li=-R iv) }\mp@subsup{\textrm{CP}}{2}{}\mp@subsup{\textrm{ZrBu}}{2}{
vMeOOC=-COOMe, 2eq. CuCl
```

dimethyl acetylenedicarboxylate (DMAD) in the presence of CuCl^{8} or $\mathrm{NiX}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{X}=\mathrm{Cl}$ or Br$) .{ }^{9}$ First, we tried to prepare linear polycyclic compounds starting from the highly alkylsubstituted phthalates $\mathbf{1}$ by homologation. Homologation of linear polycyclic compounds is shown in Scheme 1. Reduction of $\mathbf{1}$ with LiAlH_{4} gave 2, and bromination of $\mathbf{2}$ afforded bis(bromomethyl)benzene derivatives $\mathbf{3}$. Coupling reaction of $\mathbf{3}$ with alkynyllithium produced diynes 4 . Intramolecular cyclization of diynes $\mathbf{4}$ with $\mathrm{Cp}_{2} \mathrm{ZrBu}_{2}{ }^{10}$ in situ provided zirconacyclopentadienes 5. Coppermediated coupling reaction of 5 with DMAD gave dihydroanthracene derivatives $\mathbf{6}$. Repetition of the same procedures (i)-(v) from $\mathbf{1}$ to $\mathbf{6}$ for the transformation of $\mathbf{6}$ to $\mathbf{8}$ provided the five-ring compound 8. This homologation afforded odd-numbered ring compounds such as three-ring 6 , five-ring 8 (via 7), and even seven-ring compounds $\mathbf{1 0}$ (from $\mathbf{8}$ via 9) without any problem of purification.
As for even-numbered ring compounds, tetrahydronaphthalene derivatives $\mathbf{1 2}$ prepared from diynes $\mathbf{1 1}$ were used as the starting compounds. The same procedures shown in Scheme 1 and Scheme 2 were applied to preparation of four-ring compounds $\mathbf{1 3 b}$ and six-ring compounds $\mathbf{1 4 b}$.

Preparation of alkyl-substituted naphthacenes and pentacenes was performed in a similar way using substituted naphthalene dimethoxycarbonyl compounds 15b and substituted anthracene dimethoxycarbonyl compounds 19b, respectively, which were prepared by oxidation of $\mathbf{1 2}$ and $\mathbf{6}$, with DDQ or chloranil (Scheme 3). The compounds 15 and 19 were treated with the

[^1]Scheme 2. Further Homologation of $\mathbf{6}$ to $\mathbf{1 0}$

Scheme 3. Preparation of a Naphthacene Derivative and a Pentacene Derivative by Homologation

same reagents (i), (ii), (iii), (iv), and (v) as for the conversion of $\mathbf{1}$ to $\mathbf{6}$ to give the corresponding intermediates $\mathbf{1 7}$ and 21, respectively. Alternatively, 21a could be prepared from 8a with chloranil ($\mathrm{R}=\mathrm{Et}$, isolated yield 40%). The oxidation of $\mathbf{1 7}$ and 21 with DDQ afforded naphthacene $\mathbf{1 8 b}^{11}$ and pentacene 22b ${ }^{12}$

[^2]

Figure 1. Perspective view of $\mathbf{1 8 b}$.

Figure 2. Perspective view of 21a.
in 71 and 33% yield, respectively. The structure of $\mathbf{1 8 b}$, and 21a were determined by X-ray analysis as shown in Figures 1 and 2. The naphthacene derivative 18b was a red compound, and its ${ }^{13} \mathrm{C}$ NMR spectrum showed nine sp^{2} carbons of the naphthacene ring in the range of $122-138 \mathrm{ppm}$. The pentacene derivative 22b was deep-blue and soluble in organic solvents such as THF, CHCl_{3}, benzene, hexane, ether, AcOEt , and acetone. The ${ }^{1} \mathrm{H}$ NMR spectrum of 22b showed characteristic two singlets at 9.06 and 9.17 ppm assigned to protons attached to $\mathrm{C} 5, \mathrm{C} 7, \mathrm{C} 12, \mathrm{C} 14$ of the pentacene ring. In its ${ }^{13} \mathrm{C}$ NMR spectrum, eleven sp^{2} carbons are observed in the range of $120-138 \mathrm{pm}$.

In conclusion, this homologation procedure provides a general and straightforward method for synthesis of soluble acenes, and will expand the chemistry of these important compounds.

Supporting Information Available: Experimental details and spectroscopic characterization of new compounds and crystallographic data, positional and thermal parameters, and lists of bond lengths and angles for 18b and 21a (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

JA003130G

[^0]: \dagger Aichi University of Education.
 (1) For a review, see: (a) Roncali, J. Chem. Rev. 1997, 97, 173-205 and references therein. (b) Bloor, D. In Comprehensive Polymer Science; Allen, G., Bevington, J. C., Eds.; Pergamon Press: Elmsford, New York, 1986; Vol. 2, p 687.
 (2) (a) Tanaka, K. Ohzeki, K.; Nankai, S.; Yamabe, T.; Shirakawa, H. J. Phys. Chem. Solids 1983, 44, 1069. (b) Brédas, J. L.; Chance, T. T.; Baughman, R. H.; J. Chem. Phys. 1982, 76, 3673. (c) Pomerantz, M.; Cardona, R.; Rooney, P. Macromolecules 1989, 22, 304. (d) Kao, J.; Lilly, A. C., Jr. J. Am. Chem. Soc. 1987, 109, 4149.
 (3) (a) Schön, J. H.; Kloc, C.; Bucher, E.; Batlogg, B. Nature 2000, 403, 408-410. (b) Dimitrakopoulos, C. D.; Purushothaman, S.; Kymissis, J.; Callegari, A.; Shaw, J. M. Science 1999, 283, 822-824. (c) Nelson, S. F.; Lin, Y.-Y.; Gundlach, D. J.; Jackson, T. N. Appl. Phys. Lett. 1998, 72, 18541856. (d) Signerski, R.; Jarosz, G.; Godlewski, J. Synth. Met. 1998, 94, 135137. (e) Videlot, C.; Fichou, D.; Garnier, F. J. Chim. Phys. 1998, 95, 13351338. (f) Lin, Y.-Y.; Gundlach, D. J.; Nelson, S. F.; Jackson, T. N. IEEE Trans. Electron. Devices 1997, 44, 1325-1331.
 (4) Allinson, G.; Bushby, R. J.; Jesudason, M. V.; Paillaud, J. L.; Taylor, N. J. Chem. Soc., Perkin Trans. 2 1997, 147-156.
 (5) For the preparation of pentacene and naphthacene, see: (a) Harwig, P T.; Müllen, K. Adv. Mater. 1999, 11, 480-483. (b) Luo, J.; Hart, H. J. Org. Chem. 1987, 52, 4833-4836 and references therein. (c) Netka, J.; Crump, S. L.; Rickborn, B. J. Org. Chem. 1986, 51, 1189-1199. (d) Goodings, E. P.; Mitchard, D. A.; Owen, G. J. Chem. Soc., Perkin Trans. I 1972, 1310-1314.

[^1]: (6) (a) Benkhoff, J.; Boese, R.; Klärner, F. G. Liebigs Ann./Recl. 1997, 501-516. (b) Pascal, R. A., Jr.; McMillan, W. D.; Van Engen, D.; Eason, R. G. J. Am. Chem. Soc. 1987, 109, 4660-4665.
 (7) (a) Hart, H.; Ruge, B. Tetrahedron Lett. 1977, 3143-3146. (b) Hart, H.; Lai, C.; Nwokogu, G. C.; Shamouilian, S. Tetrahedron 1987, 432, 52035224
 (8) (a) Takahashi, T.; Xi, Z.; Yamazaki, A.; Liu, Y.; Nakajima, K.; Kotora, M. J. Am. Chem. Soc. 1998, 120, 1672. (b) Takahashi, T.; Kotora, M.; Xi, Z. J. Chem. Soc., Chem. Commun. 1995, 361-362.
 (9) Takahashi, T.; Tsai, F.-Y.; Li, Y.; Nakajima, K.; Kotora, M. J. Am. Chem. Soc. 1999, 121, 11093.
 (10) Negishi, E.; Cederbaum, F. E.; Takahashi, T. Tetrahedron Lett. 1986, 27, 2829.

[^2]: (11) 18b: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right) \delta 1.19(\mathrm{t}, J=7.3 \mathrm{~Hz}, 6 \mathrm{H}), 1.23(\mathrm{t}$, $J=7.3 \mathrm{~Hz}, 6 \mathrm{H}), 1.92-1.86(\mathrm{~m}, 8 \mathrm{H}), 3.26(\mathrm{t}, J=8.1 \mathrm{~Hz}, 4 \mathrm{H}), 3.72(\mathrm{t}, J=$ $8.1 \mathrm{~Hz}, 4 \mathrm{H}), 3.94(\mathrm{~s}, 6 \mathrm{H}), 7.46(\mathrm{dd}, J=3.2,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.31(\mathrm{dd}, J=3.2$, $7.0 \mathrm{~Hz}, 2 \mathrm{H}), 9.19(\mathrm{~s}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right) \delta 14.81,14.89,24.67$, $24.89,30.73,32.72,52.25,122.65,125.12,125.39,126.67,128.44,128.77$, $129.63,134.16,137.87,169.58$
 (12) 22b: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right) \delta 1.15(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}), 1.20(\mathrm{t}$, $J=7.3 \mathrm{~Hz}, 6 \mathrm{H}), 1.27(\mathrm{t}, J=7.5 \mathrm{~Hz}, 6 \mathrm{H}), 1.29(\mathrm{t}, J=7.4 \mathrm{~Hz}, 6 \mathrm{H}), 1.62-$ $1.68(\mathrm{~m}, 4 \mathrm{H}), 1.85-2.07(\mathrm{~m}, 12 \mathrm{H}), 2.78(\mathrm{t}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 3.22-3.26(\mathrm{~m}$, $8 \mathrm{H}), 3.90(\mathrm{bs}, 4 \mathrm{H}), 3.94(\mathrm{~s}, 6 \mathrm{H}), 9.06(\mathrm{~s}, 2 \mathrm{H}), 9.17(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $\left.\mathrm{Me}_{4} \mathrm{Si}\right) \delta 14.85,15.05,15.13,24.36,24.60,24.87,25.11,31.33,31.76,32.67$, $32.85,52.26,120.08,122.74,126.23,127.57,127.76,128.35,129.91,133.37$, 133.76, 136.77, 138.13, 169.65.

